Finite element model: "Hydro-FE"

- Fluid-Structure Interaction (Hydro), finite element model (FE) with "Morison Equation."
- 2. Normal and tangential drag characteristics.
- 3. Geometric and material properties of mooring system and kelp.
- 4. Detailed wave and velocity profile input
- 5. Dynamic simulations, calculate stresses get tensions

Kelp model validation at 1 and 122 meter scales

Hydro-FE: Hydrodynamic Forces

"Morison's Equation" (Morison et al., 1950)

$$f = \frac{1}{2} \rho \mathbf{D_n} \mathbf{C_n} |\mathbf{U_{Rn}}| \mathbf{U_{Rn}} |\mathbf{U_{Rn}}| \mathbf{U_{Rn}}^{\beta_{n}-1} + \frac{1}{2} \rho \mathbf{D_t} \mathbf{C_t} |\mathbf{U_{Rt}}| \mathbf{U_{Rt}}^{\beta_{t}-1} + \rho A \dot{\mathbf{U}_{Rn}} + \rho A \mathcal{C}_a \dot{\mathbf{U}}_{Rn}$$

f: force per element length

 $D_{\mathbf{n}}C_{\mathbf{n}}$: Normal drag area per element length (from tank tests)

 $|U_{Rn}|U_{Rn}^{\beta_n-1}$: Normal relative velocity, includes wave/currents/interaction. Option of a nonquadratic dependence

 D_tC_t : Tangential drag area per element length (from tank tests)

 $|U_{Rt}|U_{Rt}^{\beta_t-1}$: Tangential relative velocity, includes wave/currents/interaction. Option for a nonquadratic dependence

 $\rho A \dot{\boldsymbol{U}}_{\boldsymbol{n}}$: Inertia force with relative accelerations

 $ho A C_a \dot{m{U}}_{m{R}m{n}}$: Added mass force with relative accelerations

Results: Model Validation with Tank Tests (1-m)

Geometric and material properties of model aggregate

Reproduce force block measurements with model

Kelp length: 3 m

Mass/grow length: 16 kg/m Mass density: 1379 kg/m³

Cross section area: 3.9 (10⁻³) m²

Volume diameter: 0.07 m

Drag dimension: 1 m

Young's modulus: 367 MPa

Second area moment: 1.058 (10-11) m⁴

Poisson ratio: 0.4

No velocity reduction at 1-m scale

Results: Model Validation with Field data (122-m)

1-Dimensional Momentum Balance for Current Reduction

Geometric and material properties of kelp aggregate

Kelp length: 1 m

Mass/grow length: 5.37 kg/m Mass density: 1074 kg/m³

Cross section area: 5.0 (10⁻³) m²

Volume diameter: 0.08 m

Drag dimension: 1 m

Young's modulus: 301 MPa

Second area moment: 8.54 (10⁻¹²) m⁴

Poisson ratio: 0.4

Results: Model Validation with Field data (122-m)

Results: Model validation with field data (load case #2)

Results: Model validation with field data (5 load cases)

		Currents		Waves			0 / D100
Load Case	Date/Time	Speed (m/s)	Direction (deg)	H_s (m)	Dir (deg)	Tide (m)	% Difference Mean + 2√var
1	26-Apr-2019 22:15	0.26	250	1.3	97	16.5	-31%
2	27-Apr-2019 02:15	0.29	277	1.7	91	14.9	-6%
3	27-Apr-2019 10:15	0.19	242	1.8	92	16.7	-6%
4	27-Apr-2019 15:15	0.23	254	1.3	86	14.6	6%
5	27-Apr-2019 18:15	0.20	268	1.0	89	14.8	2%

Fredriksson, D.W., Dewhurst, T., St. Gelais, A.T., Johndrow, K., Drach, A., and Costa-Pierce (2021). High fidelity approach using empirical and field datasets to validate a kelp aquaculture system numerical model. Ocean Eng. In prep.).

- 1. Compare west load cell with model results: ≈ 15%
- 2. Finalizing manuscript checking numbers
- 3. Use empirical/field data validation approach as a basis for standards